Reactions involving Oxidation of Hexa-aquamolybdenum(III): Kinetic and Mechanistic Studies

D. T. Richens and A. G. Sykes"

Department of Inorganic Chemistry, The University, Newcastle upon Tyne NEI 7RU, U.K.

Rate laws for the oxidation of $[Mo(H_2O)_6]^{3+}$ with $[IrCl_6]^{2-}$, $[Co(C_2O_4)_3]^{3-}$, and aqua VO^{2+} show variations on patterns previously established for hexa-aqua ions.

There have been no previous detailed kinetic studies of reactions involving the oxidation of hexa-aquamolybdenum- **(111).** Here we consider rate laws for the reactions with three oxidants $[IrCl_6]^2$ ⁻ (0.89 V),¹ $[Co(C_2O_4)_3]^3$ ⁻ (0.58 V),² and aqua VO^{2+} $(0.36 \text{ V})^3$ which indicate an unusual versatility in reactivity. All three oxidants give the Mo^V aqua dimer, $Mo₂O₄²⁺$, as final product, and all observations (including a well-defined isosbestic at 598 nm in the case of the **V02+** oxidation) indicate that Mo^{lv} is a transient intermediate only. Indeed it is now known that the only stable aqua ion of Mo^{IV} is a trimer.^{4,5} The reaction sequence can accordingly be represented as in equation **(1).** Use of perchlorate was avoided because of its potential redox involvement, and instead toluene-p-sulphonate (PTS⁻) and trifluoromethanesulphonate (TFMS⁻) were used.

$$
\begin{array}{ccc}\n & -2e^- & -2e^- \\
\hline\n2Mo^{III} & \xrightarrow{\text{2Mo}^{IV}} & \text{2Mo}^{V} & \text{2Mo}^{V} \\
 & & \text{fast}\n\end{array} \tag{1}
$$

The reaction with $[IrCl_6]^2$ ⁻ was studied by the stopped-flow method by monitoring the disappearance of $[IrCl_6]^{2-}$ at the 489 nm peak ($\epsilon = 4075 \text{ M}^{-1} \text{ cm}^{-1}$), with $[Mo(H_2O)_6]^{3+}$ present $in >10$ -fold excess. The rate law (2) was found to apply.

Rate =
$$
(k_1 + k_2[H^+]^{-1})[M_0^{III}][IrCl_6^{2-}]
$$
 (2)

At 25 °C, $I = 0.20$ M (LiPTS), $k_1 = (3.4 \pm 1.1) \times 10^4$ M⁻¹ s⁻¹ and $k_2 = (2.9 \pm 0.2) \times 10^4 \text{ s}^{-1}$ with k_2 dominant at $[H^+] \le$ 0.10 **M.** Since rate constants for substitution reactions **of** $[Mo(H₂O)₆]^{3+}$ with Cl⁻ and NCS⁻ (both of which are independent of [H⁺]) are much smaller, 4.6×10^{-3} M^{-1} s⁻¹ and 0.27 M^{-1} s⁻¹ respectively at 25 °C and $I = 1.0$ M (LiPTS),⁶ it can be concluded that k_1 and k_2 are outer-sphere electrontransfer processes. The k_2 path, involving the conjugate-base form $MoOH²⁺$ is favoured presumably because the higher Mo oxidation states are more extensively hydrolysed than $[Mo(H₂O)₆]$ ³⁺.⁴

The initial slopes method has been used to define the rate law for the conventional time range study with $[Co(C_2O_4)_3]^{3-}$ as oxidant, monitored at $\lambda = 420$ nm $(\epsilon = 218 \text{ M}^{-1} \text{ cm}^{-1})$, with $[Mo(H₂O)₆]^{3+}$ in excess. This method was adapted to avoid effects due to the reaction of free oxalate with $[Mo(H₂O)₆]^{3+}$, as well as aquation of $[Co(C_2O_4)_3]^{3-}$. The rate law (3) has a dominant $k₃$ term, which is first order in each reactant and independent of [H⁺], alongside two oxidant independent terms k_4 and k_5 . At 25 °C, $I = 2.00$ M (LiPTS), $k_3 = 0.67$ M⁻¹ s^{-1} , $k_4 = (9.0 \pm 0.3) \times 10^{-3}$ M⁻¹ s⁻¹, and $k_5 = (9.4 \pm 0.1)$ \times 10⁻⁵ s⁻¹. The observation that k_3 is independent of [H⁺] is

Rate =
$$
k_3
$$
[Mo¹¹¹][Co(C₂O₄)₃³⁻] + k_4 [Mo¹¹¹]² + k_5 [Mo¹¹¹] (3)

consistent with a substitution-controlled process, where k_3 is of similar magnitude to the rate constant for the reaction of NCS⁻⁻ with $[Mo(H₂O)₆]$ ³⁺.⁶ The conjugate-base pathway for substitution (normally I_d) does not make a significant contribution for the hexa-aquamolybdenum(m) ion, presumably because of the strong associative character of the main pathway involving $[Mo(H_2O)_6]^{3+}$, which remains the most facile route. Since the reactions of for example $[Co(C_2O_4)_3]^{3-}$ and $O₂$ with the green aqua Mo^{III} dimer are *ca*. 10²-times faster than those for ${[Mo(H₂O)₆]}$ ³⁺, it would appear that for the slower redox processes, the sequence **(4)** in which the dimerisation process is rate determining, makes a significant contribution.

$$
2 \text{ Mo}^{\text{III}} \rightarrow \text{Mo}^{\text{III}}_{2} \xrightarrow{-4e^{-}} \text{Mo}^{\text{V}}_{2}
$$
 (4)

The reaction with VO^{2+} as oxidant, Mo^{III} in large excess, is also slow with k_4 and k_5 now dominant in the rate law (5).

Rate =
$$
k_4
$$
[Mo^{III}]² + k_5 [Mo^{III}] + k_6 [Mo^{III}][V^{IV}] (5)

When the reaction is monitored at the VO^{2+} peak at 760 nm $(\epsilon = 17.2 \text{ M}^{-1} \text{ cm}^{-1})$, the kinetics approximate to zero order in oxidant with $[VO^{2+}] \le 1 \times 10^{-3}$ M. From studies at 25 °C, $I = 2.00$ M(LiPTS), k_4 and k_5 are the same as in the $[Co(C_2O_4)_3]$ ³⁻ study. Both these paths give $[H^+]^{-1}$ dependencies, with no detectable contributions from other terms. We are uncertain as to the full implications of k_5 . Contributions from k_6 are small, and the precise concentration dependences are difficult to establish with certainty. Assuming they are as indicated in equation (5), then $k_6 = (6.5 \pm 0.7) \times 10^{-3} \text{ m}^{-1} \text{ s}^{-1}$. Interestingly when PTS⁻ is replaced by TFMS⁻, k_4 and k_5 make no contribution and $k₆$ is lowered by greater than an order of magnitude. However $k_1, k_2,$ and k_3 (as well as the rate constant for the NCS^- substitution reaction) are little affected by this change .

An additional feature of the $[Mo(H₂O)₆]^{3+}$ redox studies described is that an $[H^+]^{-1}$ dependence is here diagnostic of an outer-sphere reaction, whereas reaction independent of [H+] proceeds by an inner-sphere process. The opposite is the case in many other electron-transfer reactions, those between the V^{11} and Fe¹¹¹ aqua ions⁷ and Cr²⁺ with $[Co(NH₃)₅(H₂O)]³⁺$ ⁸ being particularly good examples. Indeed this pattern of behaviour appeared to be sufficiently established that an approach based on $[H^+]$ dependences has been used (with justification) as a means of distinguishing between inner- and outer-sphere mechanisms.⁹

Of further interest is whether the reaction of $[M_0(H_2O)_6]^{3+}$ with the two-equivalent oxidant $NO₃⁻¹⁰$ conforms to one or other of the above categories.

Received, 28th Februury 1983; Corn. 267

References

- 1 D. W. Margerum, **K.** L. Chellappa, F. P. Bossu, and **G.** L. Bruce, *J. Am. Chem. SOC.,* 1975, **97,** 6894.
- 2 Lee Hin Fat and W. C. **E,** Higginson, *J. Chem. Soc. A.,* 1967, 298.
- **3** W. **M.** Latimer, 'Oxidation States of the Elements and their Potentials in Aqueous Solution,' 2nd edn., Prentice Hall, 1952.
- 4 D. T. Richens and **A.** G. Sykes, *Comments Inorg. Chem.,* 1981, **1,** 141.
- 5 R. K. Murmann and M. E. Shelton, *J. Am. Chern.* **SOC.,** 1980, **102,** 3984.
- 6 *Y.* Sasaki and **A.** G. Sykes, *J. Chem. SOC., Dalton Truns.,* 1975, 1048.
- 7 B. Baker, **M.** Orhanovic, and N. Sutin, *J. Am. Gem.* Soc., 1967, **89,** 722.
- 8 D. L. Toppen and R. G. Linck, *Inorg. Chem.,* 1971, **10,** *2635.*
- 9 N. Sutin, *Acc. Chem. Res.,* 1968, **1,** 225.
- 10 P. **A.** Ketchum, R. C. Taylor, and D. C. Young, *Nature,* 1967, *259,* 202.