Reactions involving Oxidation of Hexa-aquamolybdenum(III): Kinetic and Mechanistic Studies

D. T. Richens and A. G. Sykes*

Department of Inorganic Chemistry, The University, Newcastle upon Tyne NE1 7RU, U.K.

Rate laws for the oxidation of $[Mo(H_2O)_6]^{3+}$ with $[IrCI_6]^{2-}$, $[Co(C_2O_4)_3]^{3-}$, and aqua VO²⁺ show variations on patterns previously established for hexa-aqua ions.

There have been no previous detailed kinetic studies of reactions involving the oxidation of hexa-aquamolybdenum-(III). Here we consider rate laws for the reactions with three oxidants $[IrCl_{e}]^{2-} (0.89 \text{ V})$,¹ $[Co(C_{2}O_{4})_{3}]^{3-} (0.58 \text{ V})$,² and aqua $VO^{2+} (0.36 \text{ V})^{3}$ which indicate an unusual versatility in reactivity. All three oxidants give the Mo^V aqua dimer, Mo₂O₄²⁺, as final product, and all observations (including a well-defined isosbestic at 598 nm in the case of the VO²⁺ oxidation) indicate that Mo^{1V} is a transient intermediate only. Indeed it is now known that the only stable aqua ion of Mo^{IV} is a trimer.^{4,5} The reaction sequence can accordingly be represented as in equation (1). Use of perchlorate was avoided because of its potential redox involvement, and instead toluene-*p*-sulphonate (PTS⁻) and trifluoromethanesulphonate (TFMS⁻) were used.

$$2Mo^{III} \xrightarrow{-2e^{-}} 2Mo^{IV} \xrightarrow{-2e^{-}} Mo^{V}_{2} \qquad (1)$$

The reaction with $[IrCl_6]^{2-}$ was studied by the stopped-flow method by monitoring the disappearance of $[IrCl_6]^{2-}$ at the 489 nm peak ($\epsilon = 4075 \text{ M}^{-1} \text{ cm}^{-1}$), with $[Mo(H_2O)_6]^{3+}$ present in >10-fold excess. The rate law (2) was found to apply.

Rate =
$$(k_1 + k_2[H^+]^{-1})[Mo^{111}][IrCl_6^{2-}]$$
 (2)

At 25 °C, I = 0.20 m (LiPTS), $k_1 = (3.4 \pm 1.1) \times 10^4 \text{ m}^{-1} \text{ s}^{-1}$ and $k_2 = (2.9 \pm 0.2) \times 10^4 \text{ s}^{-1}$ with k_2 dominant at [H⁺] \leq 0.10 M. Since rate constants for substitution reactions of [Mo(H₂O)₆]³⁺ with Cl⁻ and NCS⁻ (both of which are independent of [H⁺]) are much smaller, $4.6 \times 10^{-3} \text{ m}^{-1} \text{ s}^{-1}$ and 0.27 M^{-1} s⁻¹ respectively at 25 °C and I = 1.0 M (LiPTS),⁶ it can be concluded that k_1 and k_2 are outer-sphere electrontransfer processes. The k_2 path, involving the conjugate-base form MoOH²⁺ is favoured presumably because the higher Mo oxidation states are more extensively hydrolysed than [Mo(H₂O)₆]^{3+,4}

The initial slopes method has been used to define the rate law for the conventional time range study with $[Co(C_2O_4)_3]^{3-}$ as oxidant, monitored at $\lambda = 420$ nm ($\epsilon = 218 \text{ M}^{-1} \text{ cm}^{-1}$), with $[Mo(H_2O)_6]^{3+}$ in excess. This method was adapted to avoid effects due to the reaction of free oxalate with $[Mo(H_2O)_6]^{3+}$, as well as aquation of $[Co(C_2O_4)_3]^{3-}$. The rate law (3) has a dominant k_3 term, which is first order in each reactant and independent of $[H^+]$, alongside two oxidant independent terms k_4 and k_5 . At 25 °C, I = 2.00 m (LiPTS), $k_3 = 0.67 \text{ m}^{-1}$ s⁻¹, $k_4 = (9.0 \pm 0.3) \times 10^{-3} \text{ m}^{-1} \text{ s}^{-1}$, and $k_5 = (9.4 \pm 0.1) \times 10^{-5} \text{ s}^{-1}$. The observation that k_3 is independent of $[H^+]$ is

Rate =
$$k_3[Mo^{111}][Co(C_2O_4)_3^{3-}] + k_4[Mo^{111}]^2 + k_5[Mo^{111}](3)$$

consistent with a substitution-controlled process, where k_3 is of similar magnitude to the rate constant for the reaction of NCS⁻⁻ with $[Mo(H_2O)_6]^{3+}$.⁶ The conjugate-base pathway for substitution (normally I_d) does not make a significant contribution for the hexa-aquamolybdenum(III) ion, presumably because of the strong associative character of the main pathway involving $[Mo(H_2O)_6]^{3+}$, which remains the most facile route. Since the reactions of for example $[Co(C_2O_4)_3]^{3-}$ and O_2 with the green aqua Mo¹¹¹ dimer are *ca*. 10^2 -times faster than those for $[Mo(H_2O)_6]^{3+}$, it would appear that for the slower redox processes, the sequence (4) in which the dimerisation process is rate determining, makes a significant contribution.

$$2 \operatorname{Mo}^{111} \to \operatorname{Mo}^{111}_{2} \xrightarrow{-4e^{-}} \operatorname{Mo}^{V}_{2}$$
fast
$$(4)$$

The reaction with VO²⁺ as oxidant, MO^{III} in large excess, is also slow with k_4 and k_5 now dominant in the rate law (5).

$$Rate = k_4[Mo^{111}]^2 + k_5[Mo^{111}] + k_6[Mo^{111}][V^{IV}]$$
(5)

When the reaction is monitored at the VO²⁺ peak at 760 nm ($\epsilon = 17.2 \text{ M}^{-1} \text{ cm}^{-1}$), the kinetics approximate to zero order in oxidant with [VO²⁺] $\leq 1 \times 10^{-3} \text{ M}$. From studies at 25 °C, I = 2.00 M(LiPTS), k_4 and k_5 are the same as in the [Co(C₂O₄)₃]³⁻ study. Both these paths give [H⁺]⁻¹ dependencies, with no detectable contributions from other terms. We are uncertain

as to the full implications of k_5 . Contributions from k_6 are small, and the precise concentration dependences are difficult to establish with certainty. Assuming they are as indicated in equation (5), then $k_6 = (6.5 \pm 0.7) \times 10^{-3} \text{ m}^{-1} \text{ s}^{-1}$. Interestingly when PTS⁻ is replaced by TFMS⁻, k_4 and k_5 make no contribution and k_6 is lowered by greater than an order of magnitude. However k_1 , k_2 , and k_3 (as well as the rate constant for the NCS⁻ substitution reaction) are little affected by this change.

An additional feature of the $[Mo(H_2O)_6]^{3+}$ redox studies described is that an $[H^+]^{-1}$ dependence is here diagnostic of an outer-sphere reaction, whereas reaction independent of $[H^+]$ proceeds by an inner-sphere process. The opposite is the case in many other electron-transfer reactions, those between the V¹¹ and Fe¹¹¹ aqua ions⁷ and Cr²⁺ with $[Co(NH_3)_5(H_2O)]^{3+8}$ being particularly good examples. Indeed this pattern of behaviour appeared to be sufficiently established that an approach based on $[H^+]$ dependences has been used (with justification) as a means of distinguishing between inner- and outer-sphere mechanisms.⁹

Of further interest is whether the reaction of $[Mo(H_2O)_6]^{3+}$ with the two-equivalent oxidant NO_3^{-10} conforms to one or other of the above categories.

Received, 28th February 1983; Com. 267

References

- 1 D. W. Margerum, K. L. Chellappa, F. P. Bossu, and G. L. Bruce, J. Am. Chem. Soc., 1975, 97, 6894.
- 2 Lee Hin Fat and W. C. E. Higginson, J. Chem. Soc. A., 1967, 298.
- 3 W. M. Latimer, 'Oxidation States of the Elements and their Potentials in Aqueous Solution,' 2nd edn., Prentice Hall, 1952.
- 4 D. T. Richens and A. G. Sykes, *Comments Inorg. Chem.*, 1981, 1, 141.
- 5 R. K. Murmann and M. E. Shelton, J. Am. Chem. Soc., 1980, 102, 3984.
- 6 Y. Sasaki and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1975, 1048.
- 7 B. Baker, M. Orhanović, and N. Sutin, J. Am. Chem. Soc., 1967, 89, 722.
- 8 D. L. Toppen and R. G. Linck, Inorg. Chem., 1971, 10, 2635.
- 9 N. Sutin, Acc. Chem. Res., 1968, 1, 225.
- 10 P. A. Ketchum, R. C. Taylor, and D. C. Young, *Nature*, 1967, 259, 202.